Multiple centrality corrections in a primal-dual method for linear programming
نویسنده
چکیده
A modiication of the (infeasible) primal{dual interior point method is developed. The method uses multiple corrections to improve the centrality of the current iterate. The maximum number of corrections the algorithm is encouraged to make depends on the ratio of the eeorts to solve and to factorize the KKT systems. For any LP problem, this ratio is determined right after preprocessing the KKT system and prior to the optimization process. The harder the factorization, the more advantageous the higher-order corrections might prove to be. The computational performance of the method is studied on more diicult Netlib problems as well as on tougher and larger real{life LP models arising from applications. The use of multiple centrality corrections gives on the average a 25% to 40% reduction in the number of iterations compared with the widely used second-order predictor{corrector method. This translates into 20% to 30% savings in CPU time.
منابع مشابه
ABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming
Abstract We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...
متن کاملSome new results on semi fully fuzzy linear programming problems
There are two interesting methods, in the literature, for solving fuzzy linear programming problems in which the elements of coefficient matrix of the constraints are represented by real numbers and rest of the parameters are represented by symmetric trapezoidal fuzzy numbers. The first method, named as fuzzy primal simplex method, assumes an initial primal basic feasible solution is at hand. T...
متن کاملSome Duality Results in Grey Linear Programming Problem
Different approaches are presented to address the uncertainty of data and appropriate description of uncertain parameters of linear programming models. One of them is to use the grey systems theory in modeling such problem. Especially, recently, grey linear programming has attracted many researchers. In this paper, a kind of linear programming with grey coefficients is discussed. Introducing th...
متن کاملA Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملExponential membership function and duality gaps for I-fuzzy linear programming problems
Fuzziness is ever presented in real life decision making problems. In this paper, we adapt the pessimistic approach tostudy a pair of linear primal-dual problem under intuitionistic fuzzy (I-fuzzy) environment and prove certain dualityresults. We generate the duality results using exponential membership and non-membership functions to represent thedecision maker’s satisfaction and dissatisfacti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 6 شماره
صفحات -
تاریخ انتشار 1996